B B5802 Pages: 2

Reg No.:	Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FIFTH SEMESTER B.TECH DEGREE EXAMINATION, APRIL 2018

Course Code: EC303

Course Name: APPLIED ELECTROMAGNETIC THEORY (EC)

Max. Marks: 100 Duration: 3 Hours

PART A

Answer any two full questions, each carries 15 marks

Marks

1 a) State and prove Ampere's law.

- (6)
- b) Find the expression for magnetic field intensity at the center of a circular wire (9) carrying current *I* in the anticlockwise direction. The radius of the circle is 'a' and the wire is in XY plane.

- 2 a) Define electric field intensity. Derive the equation for electric field intensity at a (7) distance 'r' from a point charge of Q coulombs.
 - b) A charge of $-0.3\mu\text{C}$ is located at A (25,-30,15) in cm and a second charge of 0.5 (8) μC at B (-10, 8, 12). Find E at:
 - i) Origin
- ii) P (15,20,50) in cm.
- 3 a) Define curl of a vector field.

(2)

(8)

- b) Derive the equation for curl of a vector field in Cartesian co-ordinate system.
- (c) A vector field is given by the following equation $A = (y \cos ax)a_x + (y + e^x)a_z$. (5)

Find the curl of A at the origin.

PART B

Answer any two full questions, each carries 15 marks

- 4 a) Write the general wave equation for a conductive medium and explain each term. (4)
 - b) Define skin depth for a conductive medium? If σ denote the conductivity, Derive (5) the equation for skin depth for a good conductor.
 - c) Find the skin depth, δ at a frequency of 1.6 MHz in aluminium, where (6) σ =38.2MS/m and μ_r = 1. Also find the propagation constant, γ and the wave velocity ν .
- 5 a) Derive the equation for Electric and Magnetic field intensities for an (9) electromagnetic wave propagating in the z-direction in a dielectric medium with parameters μ_r , ε_r . Find the following:
 - i) Attenuation constant
- ii) Phase velocity

iii) Phase constant

iv) Intrinsic impedance

B B5802 Pages: 2

- b) The electric field amplitude of a uniform plane wave propagating in the a_z (6) direction is 250V/m. If $E = E_x a_x$ and $\omega = 1 \text{M rad/s}$. Find:
 - i) Frequency
- ii) Wavelength
- iii) period
- iv) The amplitude of H
- 6 a) Derive the equation for transmission and reflection coefficients of an (7) electromagnetic wave incident normally on the boundary between two different regions.
 - (b) A wave propagating in a medium has components $E = 500\cos(10^7 t \beta z)a_x \text{V/m}$ (8) and $H = 1.1\cos(10^7 t \beta z)a_y \text{A/m}$. If the wave is travelling at a velocity, v = 0.5c where 'c' denote velocity of EM wave in free space. Find:
 - i) μ_r ii) ε_r iii) β iv) λ v) η

PART C

Answer any two full questions, each carries 20 marks

- 7 a) With a neat diagram explain the propagation of electromagnetic wave in a (8) rectangular wave guide?
 - b) Derive the equation for electric and magnetic field intensities for TE mode of (10) propagation.
 - c) Obtain the cut off frequency for propagation in a rectangular wave guide. (2)
- 8 a) What is characteristic impedance of a transmission line? derive the equation for (8) characteristic impedance of a lossless transmission line.
 - b) Write short notes on single stub matching and double stub matching. (8)
 - c) How a smith chart is useful in finding the stub length for impedance matching (4)
- 9 a) Derive the equation for characteristic impedance, phase velocity, propagation (12) constant of a transmission line.
 - b) At a frequency of 80 MHz, a lossless transmission line has a characteristic (8) impedance of 300Ω and a wavelength of 2.5m. Find:
 - i) L
 - ii) C
 - iii) If the line is terminated with a parallel combination of 200Ω and 5pF, determine the reflection co-efficient and the standing wave ratio.
